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Nonequilibrium Molecular Dynamics Studies of Heat
Flow in One-Dimensional Systems'

F. Zhang,>* D. J. Isbister,” and D. J. Evans*

A nonequilibrium molecular dynamics (NEMD) heat flow algorithm is used
to compute the heat conductivity of one-dimensional (1D) lattices. For the
well-known Fermi—Pasta—Ulam (FPU) lattice, it is shown that for heat field
strengths higher than a certain critical value, a stable solitary wave (soliton) can
emerge spontaneously in molecular dynamics simulations. For lower field
strengths the dynamics of the system are mostly chaotic; heat conductivity
obtained via the NEMD algorithm increases monotonically with the size of the
system. It is also demonstrated that the 1D nonequilibrium system may reach
different steady states depending on the initial conditions.

KEY WORDS: molecular simulation; nonequilibrium system; statistical
mechanics; solitary wave; thermal conductivity.

1. INTRODUCTION

Heat conduction in one-dimensional (1D) systems is a fundamental issue
in statistical mechanics and has consequently attracted much interest.
Surprisingly, it has been found that many 1D systems do not obey
Fourier’s law [ 1-19]. In fact, the thermal conductivity is divergent in the
thermodynamic limit. For harmonically coupled oscillators, it was rigorously
shown that the thermal conductivity 4 is proportional to the number of
oscillators N [1]. Such a divergence is founded in the existence of extended
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waves (phonons) freely traveling (and carrying thermal energy) along the
system without attenuation. In later studies [ 2, 3], impurities or defects in
the chain were taken into account, since it was anticipated that phonon
waves could be damped by the scattering processes due to such defects,
thus possibly removing the N divergence of 1. However, it was demon-
strated for isotopically disordered harmonic chains that the heat conduc-
tivity still diverged, albeit at a somewhat slower rate (A~ N'Y?) [2,3].
Another way of trying to achieve normal heat conduction in 1D systems is
by invoking anharmonicity [4 ], which makes the phonons interact among
themselves, thus impeding their free propagation. However, Lepri et al.
[12] have found that even strong nonlinearity and chaotic behavior are
insufficient to ensure the existence of normal heat conduction. In the well-
known Fermi—Pasta—Ulam (FPU) f model, they found a power-law diver-
gence of the thermal conductivity A oc N7 for y~0.4. This power-law
divergence was qualitatively attributed [13] to the long-time tail of the
heat flux autocorrelation function, whose time integral gives the thermal
conductivity of the system.

Many previous studies of heat conductivity have used a straight-
forward simulation method [ 6-17]. In molecular dynamics (MD) simulations
two heat reservoirs with high and low temperatures, 7 and T,, are
located on each side of the system. The average heat flux and the internal
temperature gradient are measured, with the thermal conductivity being
the ratio of these two quantities. However, there are a number of disadvan-
tages to this approach. In particular, the system is spatially inhomogeneous
and one cannot define an intrinsic temperature 7 for the system due to the
large temperature gradient acting across the system. Consequently, it is
impossible to obtain the T dependence of the heat conductivity. In addi-
tion, problems associated with the use of the Nosé—Hoover thermostat for
boundary particles have been identified and discussed in Ref. 15.

In this paper we present a detailed study of the Evans NEMD heat
flow algorithm [20-22] for 1D systems. For sufficiently large heat fields,
a stable well-defined solitary wave (soliton) can be generated spontancously
in simulations starting from random initial conditions. After the soliton is
generated, the normal process of homogeneous heat conduction is
destroyed, with the heat being transferred through the chain via the highly
localized solitary wave. This results in a sharp increase in the effective thermal
conductivity of the system. Due to this instability, progressively smaller
fields are required, as the system size increases, to observe the linear regime
of the thermal conductivity and thereby carry out the extrapolation of the
thermal conductivity to zero field strength. Our simulation results also
indicate that the heat conductivity increases with the size of the system,
which is in qualitative agreement with previous findings [ 12-14].
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2. NEMD EQUATIONS AND SOLITARY WAVES

We consider a 1D system of N particles located along the x axis. Each
particle is allowed to move in the y direction, perpendicular to the x-axis,
and we denote by ¢, the displacement of the ith particle and by p; the
corresponding momentum. The Hamiltonian of the system is expressed as

N
1
H=Y %p?+U(q,-+1—q,-) (1)

i=1

where m is the particle’s mass and U represents the interparticle interaction
potential.

The Evans thermal conductivity algorithm for general systems of fluids
has been described in detail [20-22]. The basis of this algorithm is the
Green—Kubo relation for the thermal conductivity. For a 1D system
defined by the Hamiltonian model (1), the thermal conductivity coefficient
is given by [21]

J= lim % j dtCJ (1) T(0)>, (2)
T— o0 B T 0

where k is the Boltzmann constant, T is the absolute temperature of the
system, and L = Na is the system size. (The lattice constant «a is taken to
be unity in this paper.) The notation ¢ --- >, denotes an equilibrium
ensemble average. The heat flux vector, J,, is given by

1 .
Jo(t) = =5 %[U’(qi+1—qi)+ U(gi—qi-1)] (3)

2N

In the Evans NEMD algorithm, the N-particle system is coupled to a
“heat field” of strength f,. The coupling is defined so that the energy
dissipation is proportional to J, f,, i.e., d#/dt = LJ . f,, and that the condi-
tion of the adiabatic incompressibility of phase space (AIIl') is satisfied
[21]. The thermal conductivity coefficient can then be found from the ratio
of the heat flux to the applied heat field in the infinite time and small field
limit,

o UL())
A=1 lim ————+~ 4
felino tinolo Tf, 4)

Here {J.(2)) is, in principle, a nonequilibrium ensemble average, but in
practice, it is usually replaced by a time average of J, () if the nonequilib-
rium steady state is assumed to be unique. As pointed out in the literature
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(e.g., Ref. 21), this heat flow algorithm is valid only in the linear regime,

ie., | f,| = 0. In the nonlinear regime of nonvanishing f,, there is no known

physical meaning or interpretation for the quantity, lim,_,  {J.(2)>/Tf..
The equations of motion which satisfy the above conditions are

Gi=pi;/m (5)
pi=F+f.D;—ap; (6)

where F;=U'(q;,1—¢;) — U'(q;—¢q;_,) 1s the total force on particle i due
to the nearest nelghbor interaction,

N
Y Ulg1—4;) (7)

Jj=1

(- : 1
D,= _Q[U(qi+1—qi)+ U(q:i—q;-1)] ty

and « is the thermostat multiplier. Either of the following two thermostats
can be used:

i (4 fe D) (8)

O =

Lip, 9
X, = 2Ko > el 9)

Jj=1

where K, =1 Zj.vzl p]? /m. o, and a, are known as the constant-temperature
and constant-energy thermostats, respectively.
For simplicity, we set m = 1. From Egs. (5) and (6) we obtain

Gi=Fi+ f.D;—ag; (10)
Introducing a new variable, Q;=¢;—¢,_, leads to

0;=U'(Qis1) —2U(Q) + U'(Q; 1) = 3/LU'(Qs1) = U(Q;-1)] — 20,
(11)

Taking into account the cyclic boundary conditions of Egs. (5) and (6), we
find that the transformation ¢;—¢;_,;=0Q;, i=1, 2,.., N, has an inverse

q(1)=B-Q(1) (12)

where q(1) =(q1, g3, gx) T and Q(¢) = (0, Oy,..., On) " are column vectors,
and B is an N x N matrix [19].

Substituting Eq. (12) into Egs. (8) and (9), we obtain a=a(Q, Q)
(subscripts are omitted). Inserting this expression for «(Q, Q) into Eq. (11)
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yields a closed set of lattice dynamics equations for {Q;(7),i=1.,.., N}.
Furthermore, we can seek solutions of the form Q;(¢)=Q(i— Vt)=Q(z)
for traveling waves. Substituting this ansatz into Eq.(11), we obtain a
nonlinear differential-delay equation,

V2Q"(z)=U'(Q(z +1)) = 2U'(Q(2)) + U'(Q(z - 1))
=3 /LU (Qz+1)) = U'(Q(z— 1)1 +a(z) VQ'(2) (13)

for all ze [0, N]. Periodic boundary conditions require that Q(0) = Q(N),
and the condition 3V | 0,(7) =0 implies that

J:VQ(Z)dZEO (14)

If f,=a =0, the system simplifies to a 1D Hamiltonian lattice, and its
corresponding differential-delay Eq. (13) may be solved analytically, at
least for some nearest-neighbor interaction potentials, including the Toda
potential [23] and the well-known FPU f model [ 18, 19, 24], where the
interparticle interaction potential is U(Q) =10+ 1p0* In the latter case,
an approximate soliton solution takes the form Q(x, t)=QJ(x— Vt)+ Q,
where,

OJz)=+ 2(V;_l)sech[k,/(Vz1)/V2] (15)

14
J2BN

In the case f,#0 and a(z) #0, Eq. (13) cannot be solved analytically.
A finite difference method and Newton’s iteration method can be combined
to obtain the soliton’s configuration and velocity—amplitude relationship as
a function of f,. We have checked that the solitons are indeed solutions
of the NEMD system by direct numerical simulations of Egs. (5) and (6),
with the soliton configuration being the initial values for (p;, ¢;). The
solitons are very stable and travel in the system with a preserved shape and
velocity. Furthermore, by initializing more than one soliton in the initial
conditions, it is found that the system can support multiple solitons of
equal velocity. (If their velocities are different, the faster solitons will catch
up to the slower ones and consume them through interactions.) Thus,
single or multiple solitons (of equal velocity) are steady states of this
system for nonzero heat fields.

- [ ox T (16)
QO_ N 7N/2QSZ X



140 Zhang, Isbister, and Evans

Furthermore, from Eq. (12) we have §(¢) = B- Q(¢). Consequently, the
contribution to the kinetic energy from the soliton can be estimated [ 18]

ro Q?(z)dz—wi \/V2_1 (17)

— B

In numerical simulation we observe that when a soliton is generated, low
amplitude phonon waves give a negligible contribution to the system’s
kinetic energy. In such a case, we have

V2 /V?—1 (N=2)T
— = Ky=——— (18)
B 2
where the Boltzmann constant kp is set to unity. For any values of N

and 7, Eq.(18) has a unique solution V> 1, which is the (supersonic)
speed of the solitary wave.

1 1
K,,== iZx= 1?2
sol 2 EQz 2

3. SIMULATION RESULTS

In applying the NEMD heat flow algorithm [ Eqgs. (5) and (6)] to the
FPU f model, the parameter [ is taken to be unity. Periodic boundary
conditions are always used. The equations of motion are integrated using a
fourth-order operator-splitting integrator [ 25]. Unless indicated otherwise,
the initial conditions for ¢, and p, are always prepared in the following
way: initial values for ¢; and p, are randomly assigned and then rescaled to
fix the system’s energy/temperature to its given initial value, with the total
momentum and the center of mass of the system being zero (thus remain-
ing so in the subsequent simulation). Then an equilibrium simulation
(f,=0) is made for 10°® time steps to reach a phase point in the associated
equilibrium ensemble space. Once these initial conditions have been thus
generated, the nonequilibrium simulation for a nonzero external field
strength is generated for a time length of up to 10° units.

3.1. Constant-Temperature Thermostat

For a constant-temperature thermostat, we find that for a given tem-
perature T and particle number N, stable solitary waves can be generated
during simulations (which start from random initial conditions) if the heat
field strength f, is higher than a certain critical value f,(N), which is a
decreasing function of the system size N. The solitary wave travels in the
direction of heat flow (to the right in Fig. 1) with a supersonic speed
(V> 1). After the soliton is generated, the normal process of homogeneous
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Fig. 1. The evolution of Q;(f)=¢,,(?)
—q,(t), showing the generation of a
solitary wave in the NEMD system. The
heat field strength is f, = 0.006, the system
size is N =100 particles, and the simula-
tion temperature is 7= 1. Note that due
to the periodic boundary conditions, the
soliton enters into the left end of the lat-
tice whenever it leaves the right end. Units
are dimensionless for all figures.

heat conduction is destroyed and the heat flux increases dramatically
(Fig. 2). In such a case, heat is transported in the form of a highly localized
energy pulse carried by the soliton, and the average value of the heat flux
is nearly independent of f,,.

It is found that the soliton’s velocity increases with temperature and
system size but is nearly independent of the heat field strength for f, <1.0.
For example, for N =100, 7= 10, the soliton’s velocity is found to be, 4.7,
4.7, and 4.8 for f,=0.01, 0.1, and 1.0, respectively. In addition, it is found
that Eq. (18) gives very good estimates for the soliton’s velocity. For
instance, for N=100, T=1, Eq.(18) gives V'=3.195, and for N =200,
T=10, V=4.709; in the numerical simulations the soliton’s velocity is
found to be about 3.2 and 4.7 for these two cases, respectively.

When the heat field strength £, is sufficiently low it is nearly impossible
to generate a soliton from random initial conditions. In this case, the time-
averaged heat flux {J.(f))> can be measured and the conductivity,
lim,_,  <J.(t)>/(Tf,), can be calculated. In Fig.3 the heat conductivity
obtained through the NEMD simulations is plotted. (Error bars are
estimated to be within 10% at most.) The NEMD heat conductivity
increases with the system size. When f, — 0 the conductivity converges to
a finite value, which, according to the generalized Green—Kubo relation
[21, 26], should equal the conductivity obtained through Eq. (2). We have
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Fig. 2. The instantaneous heat flux in NEMD simula-
tions of heat flow in the FPU model, with £, =0.006
(solid line) and f, =0.01 (dashed line), showing a drastic
increase in heat flux when a soliton is generated about
time #=1000 in both cases. This is in contrast to the
situation when no soliton is generated for f,=0.002
(dotted line). The parameters are N=100 and 7= 1.
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Fig. 3. The heat conductivity obtained from the
NEMD simulation at 7= 1, for the FPU model with
N=100 (circles), 300 (squares), and 400 (triangles)
particles.
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Fig. 4. The time-dependent heat conductivity A(¢) cal-
culated from the Green—-Kubo formula, Eq. (19), for the
FPU lattice with N=100 particles and temperature
T=1.

tested this convergence for the FPU system of N =100 particles. In Fig. 4
we plot the function

0 = [ 0 10, (19)

where the ensemble average is obtained by using 10 independent trajec-
tories of length 10° units in time. It is clear that as ¢t — oo, A approaches a
value around 93 (in reduced units), which is in good agreement with the
heat conductivity obtained through NEMD algorithm. See Fig. 3.

3.2. Constant-Energy Thermostat

One of the most striking features to note is that for a given particle
number N, and internal energy per particle, E,= /N, the system
dynamics depends on both the initial conditions and the field strength £,
and can be classified into two distinct types: spontaneous formation of a
stable soliton and chaotic dynamics throughout the simulation (see Fig. 5).
Moreover, we find that in every case once a soliton is generated it never
dissipates but travels in the system for the entire length of the simulation
run. This means that the transition from a chaotic to a soliton state is
irreversible despite the equations of motion being time-reversible.

For a given field strength, there is a certain set of trajectories on which
a soliton can emerge spontaneously. The probability of finding a soliton
trajectory, denoted P, is plotted in Fig. 6 as a function of the field
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Fig. 5. The evolution of Q;(¢) showing two types of steady state for the system
with f,=0.0045, and E,= 1.0, but different random initial conditions. (a) Spon-
taneous and irreversible formation of a soliton with a constant velocity V,~x2.9;
(b) chaos throughout the simulation. Note that a soliton’s maximum amplitude can
be either positive or negative.

strength. Here each data point is calculated from 20 sample trajectories
which started from different random initial conditions. When £, is very low
the probability of generating a soliton is virtually zero, but the probability
undergoes a sharp transition to unity over a critical region of the field
strength.

The transient time to generate a soliton from the random initial condi-
tions, denoted as Ty, depends strongly on both the initial conditions and
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Fig. 6. The probability Py and the average transient time <{ Tg)
for soliton formation, as a function of the applied field strength f,.
The circles, stars, and triangles are for systems of 50, 100, and 200
particles, respectively.
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Fig. 7. Schematic illustration of the two steady states attained
in the model system. The basin of attraction for the solitons is
represented by the ellipse with a character S inside. It expands
as f, increases and becomes the whole microcanonical phase
space once f, is higher than a critical value.

the field strength. However, the ensemble average { T's) is nearly constant
for large fields and yet increases sharply as the field strength approaches
the critical value f, from the large field region. See Fig. 6.

This behavior remains qualitatively the same for different system size
N and different average energy density E,. In particular, for a fixed E,, we
find that the chaos—soliton transition becomes sharper as the system size is
increased and that the critical field strengths f.(N) appear to approach a
limiting value of f,~ 0.0047 for N > 100.

Based on these results, we can summarize the dynamics of this system
as follows. For f,=0, the system is Hamiltonian (conservative); its
dynamics are chaotic for a/most all initial conditions, though it can support
solitons for certain initial conditions (see Ref. 19 and references therein).
For f,#0 the system is dissipative and its comoving phase space shrinks
as time goes on. Some phase points collapse onto a strange chaotic attractor,
and others, which are sufficiently close to the soliton solution of the corre-
sponding Hamiltonian system, are attracted onto the soliton solution of the
dissipative system. The basin of attraction for the soliton grows as f,
increases, until it eventually occupies the whole phase space when f, is
larger than a critical value (Figs. 6 and 7).

4. CONCLUDING REMARKS

In conclusion, we have shown that the Evans NEMD heat flow algo-
rithm, which was designed originally for computing thermal conductivity in
liquids, can generate solitons when applied to 1D systems. In the well-
known FPU model, we have shown that when the heat field strength is
higher than a critical value a stable soliton can be generated spontaneously
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during simulations starting from random initial conditions. Because of this
instability, sufficiently small fields have to be used to observe the linear
regime of the thermal conductivity and thereby carry out the extrapolation
to zero field to find the thermal conductivity’s value. This poses an
undesirable restriction on the algorithm for the computation of the thermal
conductivity of 1D systems.

In addition, for constant-energy thermostated NEMD heat flow, we
have demonstrated clearly that the nonequilibrium system may reach either
a soliton-like steady state or a chaotic attractor, depending on the initial
conditions. It should be stressed that such phenomena can be observed in
many other NEMD models including 2D fluid particle systems [22]
and 2D lattices. Further investigations are necessary to understand the
implications of such multiple steady states for the computation of transport
coefficients (such as thermal conductivities) and for nonequilibrium steady-
state theories.
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